Vizbiレポート1:Tamara Munzne教授によるキーノートPart1 〜可視化の原則/三次元の難しさ〜


Vizbiでのトークは、主に二つに分けられる。一つは一般的な可視化の話題を扱うキーノート。もう一つはデータの種類ごとの可視化を扱うデータ別のセクション。まず、キーノートの中からUBCのTamara Munzne教授トークをレポート。なお、プレゼンテーションで使われたスライドはここからダウンロード可能(PDF)。

彼女のトークの題は、そのものズバリ「可視化の原則(Visualization Principles)」可視化そのものを研究していない者にも非常に分かりやすい内容だった。ここでは彼女のトークの中から興味深かった点をまとめてみる。以下では一部生物学の例を使ってあるが、基本的に一般的な可視化の話題として読めるようにしてある。

データ可視化とは何か

まず最初にデータ可視化とはどういう事なのかを定義する所から始まった。

「データ可視化システムとは、視覚的にデータを表現する事により、人間が何らかの作業を行う際、その作業をより効率的に実行できるように助けるものである」

ここでのポイントは明快。ただデータを視覚化するだけではデータ可視化システムとは呼べない。それを利用する事により何らかの知見が得られたり、作業効率化に繋がらなければ、それはデータ可視化システムとは呼べない。ここが普通のイラストレーションとは大きく異なる部分だ。

原則

データを視覚的に表現する場合、そのデータ量が多ければ表現の手法は無数にあり、どういったデザインを用いればいいのか見極めるのは難しい。その無数にある可能性の中から適切な手法を選ぶ時、もう既に非効率的と分かっている手法/表現を注意深く避けることにより、最適な表現へ近づける、と言うのが現実的な解だ。様々な研究者やデザイナーの経験から作られたいくつかのガイドラインが存在するが、その原則に従って、繰り返しシステムをブラッシュアップする事により、より良い可視化へと近づく事が可能だ。

その中から彼女が選んだトピックは、以下のようなものだった:

  • データの理解
  • 色の抑制
  • 平面の便利さの理解とその活用
  • 三次元空間を使う事の危険性
  • 解像度の重要性
  • 視覚的理解と記憶
  • 問題点に対する適切な方法での有効性の立証

どれも納得できる内容だったが、以下のセクションでは、この中から特に興味深かった点をいくつかを取り上げてまとめてみたい。

何を伝えたいのか?


データを可視化する時、まず考えなければいけないのは、その可視化によって何を見る人に伝えたいのか、と言う点だ。私はグラフ構造(ネットワーク)の可視化を主に行っているので、それを例にこの点について考えてみたい。

右の図は悪い例として作ってみたものだ。ここではそれぞれのノードには細分化されたカテゴリーが与えられていて、そのカテゴリーごとに色をランダムに割り振った状態だ。この図を見て、果たして何かを読み取る事が出来るだろうか?この図に関しては、

  • カテゴリーが多過ぎて全体の傾向が全く読み取れない
  • どこが重要な構造なのかを理解する手がかりが無い
  • 一度に詳細まで把握するにはデータ数(ここではノード)が多すぎるにもかかわらず、更にそこに加えられた詳細なカテゴリデータをそのまま色にマッピングしている

と言った問題点が挙げられると思う。この程度の大きさのデータならば、無理矢理に詳細のデータまで表現しようとせず、全体の傾向を表すような方向で可視化を行うのが現実的だ。つまり、見る人に何を一番伝えたいのかと言う部分に絞り込んで可視化を行う事が重要だ。

もう少し具体的な例で考えてみよう。遺伝子オントロジーGene Ontology, GO)と言う分子生物学者が多用する語彙の集合がある。これは、遺伝子の機能等をツリー構造(厳密には非循環有向グラフ)を用いて厳密に定義したものだ。ざっくり言ってしまうと、このツリー構造の下のレベルへ行けば行くほど細分化された、より詳細な定義になって行き、上のレベルに行けば行くほど大きなカテゴリーを表す語彙となって行く。下のグラフは、あるGOの語彙をグラフ構造で表したものだ。この例だと、

と言ったように、下へ行けば行くほど定義が詳細になっているのが分かると思う。上で示したネットワーク図がタンパク質の相互作用を表したものだとして、分かる限りのこういった詳細なGOの情報(生物学の世界ではこういった情報を通常アノテーションと呼ぶ)を加え、その大量の語彙をそのまま色へマッピングすれば、このような意味のあまり無い可視化になってしまう。この問題を避けるには、詳細まではマッピングせず、上のレベルの大まかな機能カテゴリを使い、それを少ない色にマッピングする事により解決できる。つまり、意味を失わない範囲でカテゴリを大きなものに変更し、詳細ではなく全体的な傾向を表すような方向を選択する。GOに関しては、そういった事を実現するためにGO Slimと言う上位概念のみをまとめたデータも公開されているので、上手く使い分けて全体の傾向を浮かび上がらせる事が可能だ。

下の図は、カテゴリを三つにまで減らし、重要なカテゴリに属するノードを少し大きくした上で暖色を使い、そのグループを強調している。この二つの比較で、ある程度の規模のデータだと、詳細情報を多少犠牲にしてでも全体の傾向を示す方向の方が現実的だと考えられる(ここでのアノテーションに関してはフェイクデータを使っている)。


ティーヴンスのべき法則(Stevens' power law


Munzne教授は、色・形・大きさ等の視覚的な要素を「チャンネル」と言う言葉で表し、適切なデータを適切なチャンネルにマッピングする事の重要性を説いていた。そして、そのチャンネルの使い分けの基準としてスティーヴンスのべき法則を上げていた。これは心理学者のスティーブンスが提唱した概念で、各種物理的刺激と知覚の強さの関係性を示したものだ。この法則の妥当性・厳密性に関しては色々と批判もあるようだが、感覚的にも色の差異(サチュレーション)が明度の差よりもより強くヒトの感覚に働きかけると言う辺りは何となく同意できる。

要するに、こういった指標も参考にしながら、より強くヒトに働きかける視覚要素を重要だと思うデータにマッピングすると言うのがポイントだ。適切なチャンネルを選択して使い分ける事により、先に挙げた「何を伝えたいか?」と言うメッセージをより強める事が出来る。もっと端的に言ってしまえば、ゲシュタルトを意識しながら可視化を行え、と言う事なのだろう。

三次元を使う事の危険性

 円盤が回転を始め、どんどん速くなり、薄い灰色の球体となる。膨張し―
 そして溢れ開いてケイスを迎え入れる。流体ネオン折紙効果。広がるは、距離の無いケイスの故郷、ケイスの地、無限に伸びる透明立体チェスボード。内なる眼を開けば、段のついた紅色のピラミッドは東部沿岸原子力機構。その手前の緑色の立方体群はアメリ三菱銀行。そして高く、とても遠くに見える螺旋状の枝々は軍事システムで、永遠にケイスの手には届かない。

(「ニューロマンサーウィリアム・ギブスン著 より)

SFでは盛んに三次元や仮想空間での抽象概念の可視化が描かれる。それは単純に3Dで派手なビジュアルを作るのは楽しいし、カッコいいからだ、と言う面も多分にある。だが「カッコよさの先」へ進むのはなかなか難しい。彼女はこのトークの中で、三次元空間を使う事の難しさを繰り返し述べていた。デスクトップパソコンへの高性能なビデオカード搭載が始まり、誰でも気軽に三次元空間のリアルタイムレンダリングが行えるようになった90年代、可視化研究者のコミュニティでもその可能性を熱心に探る動きがあったようだ。ヴァーチャルリアリティの研究者なども巻き込んで、盛んに三次元空間を利用したデータ可視化システムが作られたが、現在ではその有用性に疑問を呈する研究者も多いようだ。その理由には以下のようなものがある:

  • インタラクションデザインの難しさ
  • 視点による歪み
  • 文字の可読性
  • 抽象概念のマッピングの難しさ

この難しさの根源にあるものは何か?彼女はそれを説明するのに「2.5次元」と言う概念を紹介していた。2.5次元とは何だろうか。プレゼンテーションの中にあった参考文献を紐解いてみると、以下のような記述があった:

物理的な世界は、実際に三次元である。(中略)しかしながら、自意識を持つ生物は、虹彩に映った視覚情報をもとに行動する。これにより、五感が認識する空間は、数学者や物理学者が規定するものとは非常に異なった次元を持つ。なぜなら、各次元は異なったアフォーダンスを持つからである。

知覚による自己を中心とした空間(perceptual egocentric space)は、一般的にup/sideways/towards-awayと言う次元で構成されると考えられている。

(Visual Thinking for Design 第5章より。id:keionoよる日本語訳)

一読しただけでは分かりにくい文章だが、ここで注意すべきは、この本の筆者は「次元」と言う言葉を用いてるが、それはいわゆる物理空間上での次元とは異なる概念であると言う点だ。更に読み進めて行くと、この三つの次元の非等価性が「2.5次元の視覚」と言う概念に繋がって行く事が分かる。


上の図は、この内容を私が図式化したものだ。人間の認識する空間を言うものを捉える時は、眼を中心とした球形の座標系を考えると分かりやすい。上下(up-down)、横(sideways)、そして奥行き(towards-away)の三つだ。この三つのうち、人間の知覚は最初の二つの次元から大量の情報(色と位置)を受け取り世界を認識する。そして最後の次元(towards-away)に関しては、前者を補う補助的な役割を果たしていると考えられている。更に筆者はこうも述べている:

・・・このような理由で可視空間と言うものは、しばしば2.5次元であると呼ばれる。(2.5のうちの)0.5は、ここではtowards-away次元を指す。しかし、これはかなりな過大評価であると言える。視覚空間と言うものは2.05次元程度のものだと言う方が、より正確な表現だ。

(Visual Thinking for Design 第3章より。id:keiono訳)

この中で筆者は写真の例を挙げている。カメラで空間をスナップショットとして切り取るとき、それを焼き付けた平面(image plane)は、基本的にup-down/sideways次元の情報を固着させたものと言える。もちろんカメラには絞りと言う機能があり、それによりぼけを生じさせたりして奥行き(depth)を表現する事は可能だ。ただし、素人が撮った被写界深度など全く気にしてないのっぺりした写真でもその風景や人物のだいたいの情報は伝わるように、視覚において、最初の二つの次元とtowards-away次元の持つ力は大きく異なる。


まとめとしては、この人間の奥行き(towards-away)に対する知覚の弱さ、そしてアフォーダンスの差により、可視化システム構築においてそれを安易に用いると、この非等価性によりユーザーとって非常に使いづらいシステムになってしまう危険性が高いと言う事になる。上の図は、igraphと言うグラフ解析パッケージで、比較的小規模なネットワークデータを三次元レイアウトアルゴリズムを用いて私が描画したものだ。このアルゴリズムは、二次元でのばねモデルによるグラフ自動レイアウトをそのまま三次元に拡張したものだが、平面に描画していた時に比べて、何か新しい知見は得られるだろうか?

少し戻って、筆者の言う「次元が持つ異なるアフォーダンス」とは何かを見てみる。

アフォーダンスとは

  • 自意識を持つ動物にとっての環境の性質
  • 環境の中にある知覚者にとっての価値のある情報

(「アフォーダンス ー新しい認知の理論」より)

アフォーダンスは60年代に心理学者のギブソンにより提唱された概念で、特にインタラクションデザインなどの分野では盛んに用いられる。奥行きを使った三次元可視化システムの難しさを議論するとき、この概念はキーポイントの一つとなる。彼女のトークと、参考文献として示されたこの本で述べられている内容は、業務として可視化ツールを開発している自分としても共感できる部分(ジレンマも含めて)が多いので、この辺りはPart2でもう少し掘り下げてみようと思う。

私もまだ全部は読んでいないが、この本、デザイン/可視化のための心理学入門と言った趣で、なかなか面白いので、機会があったらぜひ読んでみて欲しい。

Visual Thinking: for Design (Morgan Kaufmann Series in Interactive Technologies)

Visual Thinking: for Design (Morgan Kaufmann Series in Interactive Technologies)

(Part 2へ続く)